
Macroscopic Greenberger-Horne-Zeilinger and W states in flux qubits

Mun Dae Kim*
Korea Institute for Advanced Study, Seoul 130-722, Korea

Sam Young Cho†

Center for Modern Physics and Department of Physics, Chongqing University, Chongqing 400044, People’s Republic of China
and Department of Physics, The University of Queensland, Brisbane 4072, Australia

�Received 19 December 2007; published 26 March 2008�

We investigate two types of genuine three-qubit entanglement, known as the Greenberger-Horne-Zeilinger
�GHZ� and W states, in a macroscopic quantum system. Superconducting flux qubits are theoretically consid-
ered in order to generate such states. A phase coupling is proposed to offer enough strength of interactions
between qubits. While an excited state can be the W state, the GHZ state is formed at the ground state of the
three flux qubits. The GHZ and W states are shown to be robust against external flux fluctuations for feasible
experimental realizations.
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Entanglement plays a crucial role in quantum information
science. Controllable quantum systems such as photons, at-
oms, and ions have provided the opportunities to generate
the entanglements. Recent experiments on two qubits have
shown the existence of entanglement in different types of
microscopic systems. Further, multipartite entanglements
such as the Greenberger-Horne-Zeilinger1 �GHZ� and W
�Refs. 2 and 3� states have been demonstrated in recent ex-
periments of atoms,4 photons, and trapped ions.5,6 However,
in solid-state qubits, it has not yet been achieved.

As a macroscopic quantum system, superconducting qubit
systems have been investigated intensively in experiments
because their system parameters can be controlled to ma-
nipulate quantum states coherently. Indeed, the entangle-
ments between two charges,7 phase,8,9 and flux qubits10,11

have been reported. While the timely evolving states in the
experiments of charge qubits7 exhibit a partial entanglement,
the excited level �eigenstate� of capacitively coupled two
phase qubits9 shows higher fidelity for the entanglement. The
experiments in Ref. 10 show a possibility that two flux qubits
can be entangled by a macroscopic quantum tunneling be-
tween two-qubit states, flipping both qubits. Actually, the
higher fidelity in the capacitively coupled two phase qubits is
caused by the two-qubit tunneling processes.9 In a very re-
cent study, the two-qubit tunneling process was theoretically
shown to play an important role in generating the Bell states,
maximally entangled, in the ground and excited states.12

For multipartite entanglements in superconducting qubit
systems, there have been few studies. To produce the GHZ
state in three charge qubits, only a way of doing a local qubit
operation via time evolutions was suggested.13 As one of the
possible directions to produce such multipartite entangle-
ments, then it is natural to ask how to create the W state as
well as the GHZ state in the eigenstates of superconducting
three-qubit systems. Here, we consider three flux qubits.
Normally, the interaction strength between inductively
coupled flux qubits14 is not so strong that the controllable
range of interaction is not sufficiently wide. To control a
wide range of interaction strengths in the qubits, we use the
phase-coupling scheme15–19 for three qubit �see Fig. 1�a��
which enables one to generate the GHZ and W states and to

keep them robust against external flux fluctuations for fea-
sible experimental realizations.

We start with the model shown in Fig. 1�a�. The Hamil-

tonian is written by Ĥ= 1
2 P̂i

TMij
−1P̂j +Ueff��̂�, where P̂i

=−i�� /��̂i and Mij = ��0 /2��2Ci�ij with the capacitance of
the Josephson junctions Ci. The dynamics of the flux qubits20

are described by the phase variables �̂= ��qi ,�q�� with q
=a ,b ,c and i=1,2 ,3, where �’s are the phase differences
across the Josephson junctions. If we neglect the small
inductive energy, the effective potential is written in terms
of the Josephson junction energies, Ueff���
=�q��i=1

3 EJi�1−cos �qi�+EJ��1−cos �q���. The periodic
boundary conditions involved in the qubit loops and the con-
necting loops can be written as

�q1 + �q2 + �q3 = 2��nq + fq� , �1�

��a1 − �c1� − �a� + �c� = 2�r , �2�

��b1 − �c1� − �b� + �c� = 2�s , �3�

where q=a, b, and c is qubit index and r, s, and nq integers.
Here, fq��q /�0 with external flux �q and the supercon-
ducting unit flux quantum �0=h /2e. Two independent con-
ditions in Eqs. �2� and �3� are the boundary conditions for
connecting loops. For simplicity, we consider EJ2=EJ3=EJ
and C2=C3=C, so we can set �q2=�q3 and Eq. �1� becomes
�q1=2��nq+ fq�−2�q3. The results for EJ2�EJ3 are qualita-
tively the same.

At the coresonance point �fa , fb , fc�= �1 /2,1 /2,1 /2�, the
effective potential is given by

Ueff��� = �
q=a,b,c

�EJ1 cos 2�q3 − 2EJ cos �q3 − EJ� cos �q��

+ 3EJ1 + 6EJ + 3EJ�. �4�

Here, we introduce a rotated coordinates �̃= ��� ,�	 ,�
� in
Fig. 1�b�. The Euler rotations provide new coordinates
such as �̃T=R2�� ,0 ,0�R1�0,0 ,���T=R�� ,���T, with
�=−tan−1 �2, �=−� /4, and �= ��a3 ,�b3 ,�c3�, which can be
written explicitly as
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In the same way, a new coordinates for ��= ��a� ,�b� ,�c�� is
given as �̃�T=R�� ,����T, with �̃�= ���� ,�	� ,�
��. Using the
boundary conditions of Eqs. �2� and �3�, the Hamiltonian is
written in the transformed coordinates, �̃���� ,�	 ,�
 ,�
��,

as Ĥ=�=�,	,

P̂

2

2M
+

P̂

2

2M
�
+Ueff��̂̃�, where M�=M	

=4C1+2C+2C�, M
=4C1+2C, and M
�=C�. Note that the
value of �
� is determined at the potential minimum,
�Ueff��̃� /��
�=0.

The eight corners of the hexahedron in Fig. 1�b� corre-
spond to the three-qubit states. Here, the 
↓� �
↑�� is defined
as diamagnetic �paramagnetic� current state which corre-
sponds to positive �negative� value of �qi in the boundary
condition of Eq. �1�. These states can be represented more
clearly in the rotated coordinates ��� ,�	 ,�
� because the
effective potential Ueff��� has threefold rotational symmetry
about the �
 axis, which can be shown as in the follow-
ing. Using the transformation of Eq. �5�, one of the terms
in Eq. �4� is written as �q=a,b,c cos �q3
=cos��
 /�3��2 cos��	 /�6�cos��� /�2�+cos�2�	 /�6��
−sin��
 /�3��2 sin��	 /�6�cos��� /�2�−sin�2�	 /�6��. Here,
if we rotate the potential by 2� /3 about the �
 axis as
��=−�1 /2���− ��3 /2��	, �	= ��3 /2���− �1 /2��	, and �


=�
, we can easily check the invariance of the effective
potential, Ueff���.

In order to study the GHZ state, 
�GHZ�= �
↑ ↑ ↑ �
+ 
↓ ↓ ↓ �� /�2, we draw the yellow �dark gray� square intro-
ducing the auxiliary coordinates defined by �p���a3
+�b3� /�2 and �m���a3−�b3� /�2, while for W state, 
�W�
= �
↑ ↓ ↓ �+ 
↓ ↑ ↓ �+ 
↓ ↓ ↑ �� /�3, we consider the blue �light
gray� triangle. Figures 1�c�–1�e� show the effective potential
Ueff��� in Eq. �4�. When the three qubits are decoupled for
EJ�=0,15,17 Fig. 1�c� shows that the single-qubit tunneling t1

a

is dominant over the three-qubit tunneling t3
a. As EJ� in-

creases, it is shown in Fig. 1�d� that the three-qubit tunneling
becomes dominant. Then, the GHZ state is expected to be
formed at the ground state. The dotted line in Fig. 1�d� co-
incides with �
 axis in Fig. 1�b�. Along the �
 axis, the
double-well potential is given by Ueff�0,0 ,�
 ,�3��
=3EJ1�1+cos

2�


3 �+6EJ�1−cos
�


3 �, where the barrier height
is proportional to EJ1. The WKB approximation allows us to
calculate the three-qubit tunneling t3

a through this double-
well potential.21,22 Other tunnelings such as single-qubit tun-
nelings, t1

a and t1
b, and two-qubit tunnelings, t2

a and t2
b can also

be calculated. The tight-binding approximation based on the
eight states of three qubits gives the effective Hamiltonian,
H=��E�
����
−��,��t���
�����
, where t���= ti

a�b� and 
��
= 
sasbsc�, with sq� ↑ , ↓ �.

The global entanglement for tripartite systems can be
quantified by the Q measure.23 For a normalized arbitrary
three-qubit state, 
��=c1
↓ ↓ ↓ �+c2
↓ ↓ ↑ �+c3
↓ ↑ ↓ �
+c4
↓ ↑ ↑ �+c5
↑ ↓ ↓ �+c6
↑ ↓ ↑ �+c7
↑ ↑ ↓ �+c8
↑ ↑ ↑ �, the Q

factor is given by Q�
���= 4 / 3 �
j=1

3

Dj�
���, where D1�
���

= 
c1c6−c2c5
2+ 
c1c7−c3c5
2+ 
c1c8−c4c5
2+ 
c2c7−c3c6
2
+ 
c2c8−c4c6
2+ 
c3c8−c4c7
2 and D2�
��� and D3�
��� are
obtained by exchanging the indices as 3↔5 and 4↔6 for
D2 and 2↔5 and 4↔7 for D3. For the GHZ state,
Q�
�GHZ��=1 and for the W state Q�
�W��=8 /9.

We plot the Q factors for the ground state in Figs. 2�a�
and 2�b� as a function of the rotated fluxes f���fa− fb� /�2,
f	��fa+ fb−2fc� /�6, and f
��fa+ fb+ fc� /�3. Note that the
coresonance point �fa , fb , fc�= �1 /2,1 /2,1 /2� is transformed
to �f� , f	 , f
�= �0,0 ,�3 /2�. For EJ� /EJ=0.02 in Fig. 2�a�,
Q�1. However, as EJ� increases, the GHZ state appears
around the coresonance point in Fig. 2�b�. Figure 2�c� is the
cut view of Q factor for various coupling strength. It is found
that for the GHZ state, EJ� should be larger than 0.03EJ. It
turns out that the coupling strength from the inductive cou-
pling scheme corresponds to EJ��0.005EJ.

15 This shows that
the inductive coupling scheme cannot provide a sufficient
coupling for the GHZ state.

To be observed experimentally, the GHZ state should be
robust against fluctuations of external flux. Figure 2�b�
shows that the GHZ state can be obtained for a broad range
of f� and f	. Thus, let us examine the behavior of Q factor as
a function of f
 �Fig. 2�d��. If the peak width is too narrow
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FIG. 1. �Color online� �a� A three flux qubit system. The black
squares are the Josephson junctions. The Josephson coupling ener-
gies of the Josephson junctions in the qubit and connecting loop are
EJi and EJ�, respectively. fq’s are the external fluxes and �’s are the
phase differences across the junctions. �b� The eight states of three
qubits are represented in ��a3 ,�b3 ,�c3� space at the coresonance
point. ��� ,�	 ,�
� are the rotated coordinates and O�0,0 ,0� is the
origin of both coordinates. The blue �light gray� triangle intersects
vertically the �
 axis at point P. For EJ1 /EJ=0.7, the effective
potentials Ueff in ��p ,�c3� plane �yellow �dark gray� square in �b��
are plotted for �c� EJ�=0 and �d� EJ� /EJ=0.5. The dotted line in �d�
coincides with �
 axis in �b�. �e� The effective potential Ueff in
��� ,�	� plane �blue �light gray� triangle in �b�� for EJ� /EJ=0.05
and EJ1 /EJ=0.75. Here and after, the superscript a �b� in ti

a�b� de-
notes the tunneling processes including �excluding� the states, 
↑↑↑�
or 
↓↓↓�, and i=1,2 ,3, the single-, two-, and three-qubit tunneling
processes, respectively.
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compared with the fluctuations of external flux, the GHZ
state cannot be observed experimentally. Actually, it is found
that the three-qubit tunneling t3

a plays an important role for
wide peak width. If other tunneling processes except t3

a are
negligible, small flux fluctuations can influence the Q fac-
tor given approximately by Q�
�����t3

a�2 / ���E�2+ �t3
a�2�,

where �E is the energy level change with E↓↓↓=Eg+�E and
E↑↑↑=Eg−�E, Eg the ground state energy, and �E� �f
 /�3
−0.5�.15 Qualitatively, then t3

a corresponds to the peak width
of the envelope of Q factor in Fig. 2�d�. Consequently, the
stronger t3

a, the wider the range for the GHZ state.
However, the single-qubit tunneling t1

a makes the coupled
qubits unentangled. Thus, we need to suppress the single-
qubit tunneling, while enhancing the three-qubit tunneling.
In order to do so, we need strong coupling, as shown in Fig.
1�d�, where the single-qubit tunnelings between the ground
and excited levels become suppressed. On the other hand, the
relevant parameter for t3

a is the Josephson coupling energy
EJ1. As EJ1 decreases, the barrier in the double-well potential
in Fig. 1�d� becomes lower. It implies that to get a larger
value of t3

a, EJ1 should be smaller. However, too small EJ1
makes some excited states 
sasbsc� unstable. We show the
minimum EJ1’s in Table I for three representative EJ�’s. In
fact, we found that for strong coupling case, the excited
states are stable for smaller EJ1. For small EJ� /EJ=0.05, we
obtained t1

a /EJ=1.3�10−3 and thus t3
a / t1

a�5.4�10−3. How-

ever, for larger value of EJ� /EJ=0.6, we obtained t3
a / t1

a�6.4
with t1

a /EJ=8.0�10−4. Hence, for the strong coupling case,
we can expect higher Q factor for the GHZ state.

In Table I, the peak widths for both GHZ and W states are
calculated at 95% of the maximum value of Q factor, which
are approximately proportional to t3

a and t2
b, respectively.

During the Rabi oscillations, the fluctuation of flux is esti-
mated to be in the order of 10−6�0 /Hz1/2 �Ref. 24� and 1 / f
critical current fluctuations of the Josephson junctions is
rather weak. In recent experiments for flux qubits, the flux
amplitudes are controlled up to the accuracy of 10−5�0. In
this respect, the peak width, �f
�4�10−4, for EJ�=0.6EJ
will be sufficient to observe the GHZ state experimentally.

In Fig. 1�b�, we present the blue �light gray� triangle
whose corners correspond to the three states consisting of the
W state, 
�W�= �
↑ ↓ ↓ �+ 
↓ ↑ ↓ �+ 
↓ ↓ ↑ �� /�3. The blue �light
gray� triangle intersects �
 axis at �
�0. Actually, there is
another intersection plane with �
�0 for another possible W
state. For simplicity, we will focus on the W state on the blue
�light gray� triangle plane. The effective potential at the
plane of the blue �light gray� triangle for the three states is
drawn in Fig. 1�e�. Energetically, in our model, the energies
of three states are higher than those of the two states consist-
ing of the GHZ state, i.e., the ground state. Then, the W state
can be observed in an excited state.

Let us discuss how a W state can be realized in an excited
state. At the coresonance point �f� , f	 , f
�= �0,0 ,�3 /2�, the
six states except for 
↓↓↓�, 
↑↑↑�� are degenerated in the
second excited state. The six states are classified into two
classes, 
↑↑↓�, 
↑↓↑�, 
↓↑↑�� with Sz=1 /2 and 
↑↓↓�, 
↓↑↓�,

↓↓↑�� with Sz=−1 /2. Hence, the two classes of the six states
can be separated by applying an additional flux �f
. The
three states of each class can form a W state. As shown in
Fig. 1�e�, the two-qubit tunneling amplitude t2

b creates the W
state, while the single-qubit tunneling t1

b destroys the W state
because it induces a superposition of states of the two
classes. If other small tunnelings are negligible, then
the Q factor is given by Q�
����8�1+2.5�t1

b /�E�2� /9
��1+4�t1

b /�E�2�. From Q�
�W��=8 /9, it turns out that

�E
� 
f
 /�3−1 /2
 should be much larger than t1

b. Therefore,
a sufficient �f
 is needed to generate a W state. Actually, we
found that 
�f

�0.01 is sufficient to show the generation of
a W state �Figs. 3�a� and 3�b��. In Fig. 3�b�, the W state is
formed slightly away from the point, f�= f	=0. For a rela-
tively weak coupling, the single-qubit tunneling t1

b, as well as
t2
b, becomes larger. Thus, an additional small flux f	

�0.0004 will break the symmetry so that the state 
�� closer
to the W state would be formed. In Fig. 3�c�, we can see the
W state around f�=0.

On the contrary to the GHZ state where the range of f
 is
critical for experimental observation, for W state the range in
�f� , f	� plane is important, as shown in Figs. 3�a� and 3�b�.
Figure 3�d� shows the Q factor for W states whose peak
widths depend on the value of the two-qubit tunneling am-
plitude t2

b �Table I�. As EJ� decreases, t2
b becomes larger. How-

ever, if the coupling strength becomes too weak, the two
classes with Sz= �1 /2 will become overlapped with each
other through the single qubit tunneling t1

b so that the W state
may readily be broken. Hence, as a consequence of compro-
mise, the W state emerges for an intermediate coupling
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FIG. 2. �Color online� The Q factors of the ground state in the
three qubit system for �a� EJ� /EJ=0.02 and for �b� EJ� /EJ=0.05.
Here, f
=�3 /2 and EJ1 /EJ=0.7. �c� Cut view of Q factors in �a�
and �b� for f�=0. �d� For f�= f	=0 and EJ� /EJ=0.6, Q factors are
plotted as a function of f
 for several EJ1.

TABLE I. Peak widths for Q factors of GHZ state in Fig. 2�d�
and of W state in Fig. 3�d� at 95% of the maximum values. Here,
the unit of EJ�, EJ1, and t is EJ.

EJ� EJ1 t3
a

Peak width
GHZ ��f
� t2

b
Peak width

W ��f��

0.05 0.7 7.0�10−6 �5�10−7 6.3�10−4 �10−4

0.1 0.75 2.6�10−7 �2�10−8 1.0�10−4 �2�10−5

0.6 0.58 5.1�10−3 �4�10−4 0 0
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strength, EJ�=0.05EJ, with rather broader peak width, as
shown in Table I.

The quantification of entanglement can be done by using
the state tomography measurement.9,25 Recently, for capaci-
tively coupled phase qubits, the tomography measurement
has been done,9 where they simultaneously measure the state

of coupled qubits. For present coupling, we expect that the
similar tomography measurement can also be performed.

The tripartite entanglement with superconducting qubits
has not yet been achieved so far. For the bipartite entangle-
ment, capacitively coupled phase qubits showed high fidelity
in a recent experiment,9 while for charge qubits, only partial
entanglement was observed. The interactions between phase
qubits are XY-type interactions, which describe simultaneous
two-qubit flipping processes. The two- or multiple-qubit tun-
neling processes are essential for entanglement of qubits.12

However, for charge qubits, the interaction is mainly Ising
type. We believe that this is the reason for weak entangle-
ment in experiments with charge qubits. For three coupled
phase qubits, the lowest energy state is 
000� state, while the
highest is 
111� state. Hence, the superposition between these
two states will be negligibly weak, thus the GHZ state cannot
be formed. However, since the other states, for example,

100�, 
010�, 
001� states, are energetically degenerated, the
W state could be obtained.

In summary, we investigate a three superconducting flux
qubit system. The GHZ and W states can be realizable in the
eigenstates of the macroscopic quantum system. We show
that while the GHZ state needs strong coupling strength, the
W state can be formed at an optimized coupling strength.
Moreover, to keep the tripartite entangled states robust
against external flux fluctuations for feasible experimental
realizations, the three coupled qubit system can provide rela-
tively large three-qubit and two-qubit tunneling amplitudes
for GHZ and W states, respectively.
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FIG. 3. �Color online� The Q factors of the second excited state
with f
=�3 /2−0.01 for �a� EJ� /EJ=0.1 and EJ1 /EJ=0.75 and �b�
EJ� /EJ=0.05 and EJ1 /EJ=0.7. Note the different scales and posi-
tions of maximum Q factor in both figures. Here, the yellow �light
gray� regions denote high Q factors. �c� The coefficients of the
eigenstate used in �b� are plotted along the dotted line with
f	=−0.0004, which shows that W state is formed around f�=0. �d�
Cut view of Q factors along dotted lines in �a� and �b�. The green
dotted line indicates Q=8 /9 for W state. The peak width for
EJ� /EJ=0.05 is much wider than that for EJ� /EJ=0.1.
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